Direkt zum Inhalt
Technik 13. Juli 2023

Forscher machen Gummimaterialien intelligent

Wissenschaftler entwickeln autonom schaltbare, also quasi „intelligente“ Gummimaterialien, die sich an Bewegungen und Umweltbedingungen anpassen können.

Das intelligente Gummimaterial kann sich an die Umgebungsfeuchte  oder als Armband an Bewegungen eines Handgelenks anpassen.
Das intelligente Gummimaterial kann sich an die Umgebungsfeuchte  oder als Armband an Bewegungen eines Handgelenks anpassen.

Ein weiches Exoskelett zur Unterstützung von Schlaganfallpatienten oder Pflaster zur kontrollierten Abgabe von Arzneimitteln müssen aus Materialien bestehen, die sich intelligent und selbstständig an die Bewegungen der Träger sowie an wechselnde Umweltbedingungen anpassen. Materialwissenschaftler der Universität Stuttgart und Pharmazeuten der Universität Tübingen haben nun gemeinsam autonom schaltbare Gummimaterialien entwickelt, die genau dies leisten können.

Gummimaterialien passen sich intelligent an Umgebungsbedingungen an

Intelligent bedeutet bei den neuen Polymermaterialien, dass sich die Materialeigenschaften autonom ihren Umgebungsbedingungen anpassen können. Abhängig von Luftfeuchte und Temperatur zeigen die Materialien Steifigkeitsänderungen über mehr als vier Größenordnungen und lassen sich selbst bei großen Deformationen elastisch verformen. Die mechanischen Eigenschaften sind damit für die jeweilige Anwendung einstellbar.

Ideal für Roboter aus weichen organischen Materialien

Prof. Sabine Ludwigs vom Institut für Polymerchemie bezeichnet die Materialien als „Intelligente Gummimaterialien“ und ergänzt: „Diese extreme Anpassungsfähigkeit macht unsere Polymere extrem attraktiv für Roboter aus weichen organischen Materialien, wie sie – Stichwort Soft Robotics – beispielsweise in der Biomedizin oder auch bei Such- und Bergungseinsätzen verwendet werden. Auch für intelligente Hautanwendungen wie etwa Exoskelette aus weichen flexiblen Stoffen sind die Polymere sehr gut geeignet.“

Ad

Bei beiden Anwendungen muss das Material sowohl schnelle als auch langsame Bewegungen ermöglichen, also einstellbare viskoelastische Eigenschaften aufweisen. „Unser Material kann das“, versichert Prof. Holger Steeb vom Institut für Mechanik der Universität Stuttgart.

Pflaster für kontrollierte Arzneimittelfreigabe machbar

Die Anpassung an Feuchte und die reversible Wasseraufnahmefähigkeit eröffnen weiterhin den Einsatz als Pflaster für die kontrollierte Arzneimittelfreigabe durch die Haut. Ganz konkret experimentierten die Forschenden mit der Freigabe des Schmerzmittels Diclofenac in einem Hautmodell. „Der Trick besteht darin, dass die Wirkstofffreisetzung als Reaktion auf die veränderliche Feuchte der Wunde, also abhängig vom Wundexsudat, vom Pflaster selbst gesteuert wird“, erklärt die Tübinger Pharmazie-Expertin Dominique Lunter.

Die Arbeiten entstanden im Rahmen des neu eingerichteten, fakultätsübergreifenden Labors für Functional Soft Materials (FSM Labor) am Exzellenzcluster Datenintegrierte Simulationswissenschaft (EXC 2075, Simtech) der Universität Stuttgart. Es handelt sich hierbei um eine sehr erfolgreiche Kooperation der Arbeitsgruppen um Sabine Ludwigs aus der Polymerchemie und von Holger Steeb aus der Mechanik, die im FSM-Labor ihre Expertisen im Bereich der Chemie sowie der Funktion und Mechanik von intelligenten Polymermaterialien bündeln.

Vision: Materialien, die auf aktive Trigger reagieren

Über die Feuchte- und Temperaturabhängigkeit hinausgehend wollen die Stuttgarter Forscher in Zukunft multifunktionale Materialsysteme untersuchen, die sich sowohl autonom an ihre Umgebung anpassen, als auch auf aktive Trigger, wie zum Beispiel elektrische Stimuli reagieren können.

Geplant sind zudem die Modellierung und damit die Vorhersage komplexer Architekturen auf der Basis von Simulationen. Die Ergebnisse der Forschung im Bereich der Polymeren Materialwissenschaften kommen somit auch der Forschung des Exzellenzclusters „Daten-Integrierte Simulationswissenschaft“ (Simtech) der Universität zugute.

Neben der Förderung durch Simtech wurde das Projekt von der DFG im Rahmen des Schwerpunktprogramms SPP2100 „Soft Material Robotics“ finanziert. Die Kooperation mit Dominique Lunter ist als uniübergreifende Zusammenarbeit im Rahmen der Exzellenzstrategien der Universität Stuttgart und der Universität Tübingen entstanden. gk

Passend zu diesem Artikel